Как проверить конденсатор мультиметром

Электрический конденсатор

У этого термина существуют и другие значения, см. Конденсатор (значения).
См. также: вариконд
См. также: варикап Основа конструкции конденсатора — две токопроводящие обкладки, между которыми находится диэлектрик
Слева — конденсаторы для поверхностного монтажа; справа — конденсаторы для объёмного монтажа; сверху — керамические; снизу — электролитические. На танталовых конденсаторах (слева) полоской обозначен «+», на алюминиевых (справа) маркируют «-».
SMD-конденсатор на плате, макрофотография
Различные конденсаторы для объёмного монтажа

Конденса́тор (от лат. condensare — «уплотнять», «сгущать» или от лат. condensatio — «накопление») — двухполюсник с постоянным или переменным значением ёмкости и малой проводимостью; устройство для накопления заряда и энергии электрического поля.

Конденсатор является пассивным электронным компонентом. Ёмкость конденсатора измеряется в фарадах.

История

В 1745 году в Лейдене немецкий каноник Эвальд Юрген фон Клейст и независимо от него голландский физик Питер ван Мушенбрук изобрели конструкцию-прототип электрического конденсатора — «лейденскую банку». Первые конденсаторы, состоящие из двух проводников, разделенных непроводником (диэлектриком), упоминаемые обычно как конденсатор Эпинуса или электрический лист, были созданы ещё раньше.

Конструкция конденсатора

Конденсатор является пассивным электронным компонентом.

В простейшем варианте конструкция состоит из двух электродов в форме пластин (называемых обкладками), разделённых диэлектриком, толщина которого мала по сравнению с размерами обкладок (см. рис.).

Практически применяемые конденсаторы имеют много слоёв диэлектрика и многослойные электроды, или ленты чередующихся диэлектрика и электродов, свёрнутые в цилиндр или параллелепипед со скруглёнными четырьмя рёбрами (из-за намотки).

Свойства конденсатора

Конденсатор в цепи постоянного тока может проводить ток в момент включения его в цепь (происходит зарядка или перезарядка конденсатора), по окончании переходного процесса ток через конденсатор не течёт, так как его обкладки разделены диэлектриком. В цепи же переменного тока он проводит колебания переменного тока посредством циклической перезарядки конденсатора, замыкаясь так называемым током смещения.

В методе гидравлических аналогий конденсатор — это гибкая мембрана, вставленная в трубу. Анимация демонстрирует мембрану, которая растягивается и сокращается под действием потока воды, что аналогично заряду и разряду конденсатора под действием электрического тока

С точки зрения метода комплексных амплитуд конденсатор обладает комплексным импедансом

Z
^

C

=

1

j
ω
C

=

j

ω
C

=

j

2
π
f
C

,

{displaystyle {hat {Z}}_{C}={frac {1}{jomega C}}=-{frac {j}{omega C}}=-{frac {j}{2pi fC}},}

При изменении частоты изменяются диэлектрическая проницаемость диэлектрика и степень влияния паразитных параметров — собственной индуктивности и сопротивления потерь.

На высоких частотах любой конденсатор можно рассматривать как последовательный колебательный контур, образуемый ёмкостью

C

{displaystyle C}

, собственной индуктивностью

L

c

{displaystyle L_{c}}

и сопротивлением потерь

R

n

{displaystyle R_{n}}

Резонансная частота конденсатора равна

f

p

=

1

2
π

L

c

C

{displaystyle f_{p}={frac {1}{2pi {sqrt {L_{c}C}}}}}

Принцип работы

Теперь, когда мы знаем, как обозначается данный элемент на схемах, нужно рассмотреть принцип работы конденсатора. Когда обкладки конденсатора подключают к источнику питания, электрические заряды от положительного и отрицательного зажима ИП устремляются к обкладкам, скапливаясь на них.

Электрический ток прерывается после заряда конденсатора до номинальной ёмкости, так как между обкладками находится слой диэлектрика он не может протекать постоянно. Когда источник питания отключат, на конденсаторе останутся заряды, а значит и останется напряжение на его выводах.

Заряды, скопившиеся на каждой из обкладок, противоположны. Соответственно та обкладка, что была подключена к плюсовому выводу источника питания – заряжена положительно, а та, что к минусовому – отрицательно. Принцип работы этого изделия основан на притяжении разноименных зарядов в электрической цепи.

Простыми словами конденсатор сохранит ту энергию, которая была передана от источника питания – в этом и кроется его назначение. Однако на практике есть разнообразные потери и утечки.

Интересно! Лейденская банка – это прообраз современных конденсаторов, родившийся на свет в 1745 году. Это устройство было способно накапливать энергию и извлекать искры при замыкании его обкладок. Внешний вид и конструкцию вы видите ниже.

А на рисунке ниже вы видите конструкцию простейшего плоского конденсатора – две обкладки, разделенные диэлектриком:

Так как ёмкость прямо пропорциональна площади обкладок и обратно пропорциональна расстоянию между ними – то чтобы увеличить ёмкость, инженеры разработали ряд других форм конденсаторов. Например, свёрнутые в спираль обкладки – так их площадь становилась во много раз больше при тех же габаритных размерах, а также цилиндрические и сферические решения.

Один из законов коммутации гласит, что напряжение на обкладках конденсатора не может изменится скачком, что и иллюстрирует следующая миниатюра.

Классификация конденсаторов может происходить по различным критериям.

По постоянству ёмкости:

  • Постоянные.
  • Переменные. Их ёмкость может изменяться либо вручную оператором (пользователем) устройства, либо под воздействием напряжения (как в варикапах и варикондах).

По полярности прикладываемого напряжения:

  • Неполярные – могут работать в цепях переменного тока.
  • Полярные – при подключении напряжения неправильной полярности выходят из строя.

В зависимости от того, где используются эти компоненты, различают разные варианты по материалу:

  • Бумажные и металлобумажные – это привычные многим, распространённые в советское время конденсаторы в виде прямоугольных кирпичиков с маркировкой наподобие «МБГЧ». Внешний вид этого вида конденсаторов вы видите ниже. Они неполярные.
  • Керамические – ими часто фильтруют высокочастотные помехи, а относительная диэлектрическая проницаемость позволяет делать многослойные компоненты с ёмкостью сопоставимой электролитам (дорого), не чувствительны к полярности.
  • Плёночные – распространены в виде коричневых подушечек, недорогие, используются повсеместно. Характерны малым током утечки, небольшой ёмкостью, высоким рабочим напряжением и нечувствительностью к полярности приложенного напряжения.
  • С воздушным диэлектриком. Лучший пример такого элемента – подстроечный конденсатор резонансного контура из радиоприёмника, ёмкость таких элементов невелика, но удобно реализовать её изменение.
  • Электролитические – это элементы в виде бочонков, их устанавливают чаще всего в качестве фильтра сетевых пульсаций в БП. Конструкция и принцип действия позволяют получить большую ёмкость при небольших размерах, но со временем могут высыхать, терять ёмкость или вздуваться. Как выглядят в исправном состоянии эти изделия вы видите ниже. В качестве диэлектрика используют тонкий слой оксида металла. Если в БП используют конденсаторы с диэлектриком из AL2O3 – т.н. «алюминиевые электролиты», то для работы в высокочастотных цепях – используют танталовые (Ta25 — они также относятся к электролитам) конденсаторы, потому что у них меньший ток утечки, большая устойчивость к внешним воздействиям в отличие от предыдущих, алюминиевых.
  • Полимерные – способны выдерживать большие импульсные токи, работать при низких температурах

Конструкция и принцип работы

Простейшим конденсатором являются две металлические пластины, разделённые диэлектриком. Выступать в качестве диэлектрика может воздушное пространство между пластинами. Модель такого устройства изображена на рис. 2.


Рис. 2. Модель простейшего конденсаторного устройства

Если на конструкцию подать постоянное напряжение, то образуется кратковременная замкнутая электрическая цепь. На каждой металлической пластине сконцентрируются заряды, полярность которых будет соответствоать полярности приложенного тока. По мере накопления зарядов ток будет ослабевать, и в определенный момент цепь разорвётся. В нашем случае это произойдёт молниеносно.

При подключении нагрузки накопленная энергия устремится через нагрузочный элемент в обратном направлении. Произойдёт кратковременный всплеск электрического тока в образованной цепи. Количество накапливаемых зарядов (ёмкость, C) прямо зависит от размеров пластин.

Конструкции современных конденсаторов отличаются от рассматриваемой нами модели. С целью увеличения ёмкости вместо пластин используют обкладки из алюминиевой, ниобиевой либо танталовой фольги, разделённой диэлектриками. Эти слоеные ленты туго сворачивают в цилиндр и помещают в цилиндрический корпус. Принцип работы не отличается от описанного выше.

Существуют также плоские конденсаторы, конструктивно состоящие из множества тонких обкладок, спрессованных между слоями диэлектрика в форме параллелепипеда. Такие модели можно представить себе в виде стопки пластин, образующих множество пар обкладок, соединённых параллельно.

В качестве диэлектриков применяют:

  • бумагу;
  • полипропилен;
  • тефлон;
  • стекло;
  • полистирол;
  • органические синтетические плёнки;
  • эмаль;
  • титанит бария;
  • керамику и различные оксидные материалы.

Отдельную группу составляют изделия, у которых одна обкладка выполнена из металла, а в качестве второй выступает электролит. Это класс электролитических конденсаторов (пример на рисунке 3 ниже). Они отличаются от других типов изделий большой удельной ёмкостью. Похожими свойствами обладают оксидно-полупроводниковые модели. Второй анод у них – это слой полупроводника, нанесённый на изолирующий оксидный слой.


Рис. 3. Конструкция радиального электролитического конденсатора

Электролитические модели, а также большинство оксидно-полупроводниковых конденсаторов имеют униполярную проводимость. Их эксплуатация допустима лишь при наличии положительного потенциала на аноде и при номинальных напряжениях. Поэтому следует строго соблюдать полярность подключения упомянутых радиоэлектронных элементов.

На корпусе такого прибора обязательно указывается полярность (светлая полоска со значками «–», см. рис. 4) или значок «+» со стороны положительного электрода на корпусах старых отечественных конденсаторов.


Рисунок 4. Обозначение полярности выводов

Срок службы электролитического конденсатора ограничен. Эти приборы очень чувствительны к высоким напряжениям. Поэтому при выборе радиоэлемента старайтесь, чтобы его рабочее напряжение было значительно выше номинального.

ПРИМЕНЕНИЕ КОНДЕНСАТОРОВ

Конденсаторы нашли широкое применение во всех областях электротехники, они используются в различных электрических цепях. В электроцепи переменного тока они могут служить в качестве ёмкостного сопротивления. Возьмем такой пример, при последовательном подключении конденсатора и лампочки к батарейке (постоянный ток), лампочка светиться не будет.

Если же подключить такую цепь к источнику переменного тока, лампочка будет светиться, причем интенсивность света будет напрямую зависеть от величины ёмкости используемого конденсатора.

Благодаря этим качествам, конденсаторы применяются в качестве фильтров, в цепях подавляющих высокочастотные и низкочастотные помехи.

Конденсаторы также используются в различных импульсных схемах, где требуется быстрое накопление и отдача большого электрического заряда, в ускорителях, фотовспышках, импульсных лазерах, благодаря способности накапливать большой электрический заряд и быстро передавать его другим элементам сети с низким сопротивлением, создавая мощный импульс. Конденсаторы применяют для сглаживания пульсаций при выпрямлении напряжения. Способность конденсатора сохранять заряд длительное время дает возможность использовать их для хранения информации. И это только очень краткий перечень всего где может применяться конденсатор.

Продолжая занятия электротехникой, ты откроешь для себя еще много интересного в том числе и о работе и применению конденсаторов. Но, и этой информации, тебе будет достаточно для общего понимания и продвижения дальше.

Где и для чего применяются

Всё же ответим на вопрос «для чего предназначен конденсатор?» с практической точки зрения. Для этого рассмотрим несколько схем.

Самое широкое применение электролитические конденсаторы нашли в качестве уже не раз упомянутого фильтра сетевых пульсаций в блоках питания. На схеме ниже изображено, где именно устанавливается электролит. Чем больше нагрузка – тем большая ёмкость электролита нужна для сглаживания пульсаций.

Следующее место, где применяются конденсаторы – это фильтры высоких и низких частот. Ниже на схеме приведены типовые включения. Таким образом в акустических системах разводят басы, средние и высокие частоты по динамикам без применения активных компонентов.

Балластные блоки питания часто используются для зарядки небольших аккумуляторов и питания маломощных устройств, таких как дешевые светодиодные лампочки, радиоприёмники и прочие. Плёночный конденсатор устанавливается последовательно с питающим устройством, ограничивая ток за счёт своего реактивного сопротивления – в этом и заключается принцип работы такой простой схемы.

Снабберы – это устройства, предназначенные для защиты полупроводниковых ключей и контактов реле от нагрузок, возникающих при коммутации. В современных импульсных высокочастотных БП нашли применение снабберы из резистора и конденсатора, таким образом улучшаются основные параметры в цепи и снижаются нагрузки на ключи, как и потери мощности на его нагрев. Принцип действия снаббера состоит в замедлении фронтов роста и спада напряжения на ключе за счет использования постоянной времени заряда ёмкости.

Соединение конденсаторов

Существует два способа соединения: параллельное и последовательное. При параллельном соединении общая ёмкость равна сумме ёмкостей отдельных элементов: Собщ. = С1 + С2 + … + Сn.

Для последовательного соединения расчёт ёмкости рассчитывается по формуле: Cобщ. = ( C1* C2 *…* Cm ) / ( C1 + C2+…+Cn )

Чтобы быстро посчитать общую емкость соединенных конденсаторов лучше воспользоваться нашими калькуляторами:

  1. https://www.asutpp.ru/kalkulyator-rascheta-posledovatelnogo-soedineniya-kondensatorov.html
  2. https://www.asutpp.ru/kalkulyator-rascheta-parallelnogo-soedineniya-kondensatorov.html

Как проверить конденсатор

Для проверки конденсаторов необходим прибор, тестер или иначе мультиметр . Существуют специальные приборы измеряющие емкость (С), но эти приборы стоят денег, и зачастую нет смысла их приобретать для домашней мастерской, тем более на рынке есть недорогие китайские мультиметры с функцией измерения емкости. Если на твоем тестере нет такой функции, ты можешь воспользоваться обычной функцией прозвонки – к ак прозванивать мультиметром , как и при проверке резисторов – что такое резистор . Конденсатор можно проверить на “пробой” в этом случае сопротивление конденсатора очень большое, почти бесконечное (зависит от материала из которого изготовлен кондер). Электролитические конденсаторы проверяют следующим образом – Необходимо включить тестер в режим прозвонки, подключить щупы прибора к электродам (ножкам) конденсатора и следить за показанием на индикаторе мультиметра, показание мультиметра будет изменяться в меньшую сторону, пока не остановится совсем. После чего нужно щупы поменять местами, показания начнут уменьшаться почти до нуля. Если все произошло так как я описал, “кондер” исправен. Если нет изменений в показаниях или показания сразу становятся большими или прибор вовсе показывает ноль, конденсатор неисправен. Лично я предпочитаю проверять “кондюки” стрелочным прибором плавность движения стрелки легче отслеживать, чем мелькание цифр в окошке индикатора.

Рассчитать емкость конденсатора можно по формуле:

Емкость конденсатора измеряется в Фарадах, 1 фарад – это огромная величина. Такую ёмкость будет иметь металлический шар размеры которого будут превышать размеры нашего солнца в 13 раз. Шар размером в планету Земля будет иметь иметь емкость всего 710 микрофарад. Обычно, емкость конденсаторов которые мы применяем в электротехнических устройствах обзначается в микрофарадах (mF), пикофарадах (nF), нанофарадах ( nF). Следует знать что, 1 микрофарад равен 1000 нанофарад. Соответственно, 0.1 uF равен 100 nF. Кроме главного параметра, на корпусе элементов отмечается допустимое отклонение реальной ёмкости от указанной и напряжение, на которое рассчитано устройство. При его превышении прибор может выйти из строя.

Этих знаний тебе будет вполне достаточно для начала и для того чтобы самостоятельно продолжить изучение конденсаторов и их физических свойств в специальной технической литературе. Желаю успеха и настойчивости!

Если вы рассмотрите печатную плату даже самого простого электронного устройства, то обязательно увидите конденсатор, а чаще всего встретите множество этих элементов. Присутствие этих изделий на различных электронных схемах объясняется свойствами данных радиоэлементов, широким диапазоном функций, которые они выполняют.

В настоящее время промышленность поставляет на рынок конденсаторную продукцию различных видов (рис. 1). Параметры изделий варьируются в широких пределах, что позволяет легко подобрать радиодеталь для конкретной цели.

Рис. 1. Распространённые типы конденсаторов

Рассмотрим более подробно конструкции и основные параметры этих вездесущих радиоэлементов.

Классификация

Основные параметры конденсаторных изделий определяются типом диэлектрика. От материала зависит стабильность ёмкости, тангенс диэлектрических потерь, пьезоэффект и другие. Исходя из этого, классификацию моделей целесообразно осуществлять именно по виду диэлектрика.

По данному признаку различают следующие типы изделий:

  • вакуумные;
  • с воздушным диэлектриком;
  • радиоэлементы, в которых диэлектриком является жидкость;
  • с твёрдым неорганическим диэлектриком (стекло, слюда, керамика). Характеризуются малым током утечки;
  • модели с бумажным диэлектриком и комбинированные, бумажно-плёночные;
  • масляные конденсаторы постоянного тока;
  • электролитические;
  • категория оксидных конденсаторов, к которым относятся оксидно-полупроводниковые и танталовые конденсаторы;
  • твёрдотельные, у которых вместо жидкого электролита используется органический полимер или полимеризованный полупроводник.

В твёрдотельных моделях срок службы больший, чем у жидко-электролитических и составляет около 50 000 часов. У них меньшее внутренне сопротивление, то есть ЭПС почти не зависит от температуры, они не взрываются.

Классифицируют изделия и по другому важному параметру – изменению ёмкости. По данному признаку различают:

  • постоянные конденсаторы, то есть те, которые имеют постоянную емкость;
  • переменные, у которых можно управлять изменением ёмкости механическим способом либо с помощью приложенного напряжения (варикапы и вариконды), а также путём изменения температуры (термоконденсаторы);
  • класс подстроечных конденсаторов, которые используют для подстройки или выравнивания рабочих ёмкостей при настройке контуров, а также с целью периодической подстройки различных схем.

Все существующие конденсаторы можно условно разделить на общие и специальные. К изделиям общего назначения относятся самые распространённые низковольтные конденсаторы (см. рис. 6). К ним не предъявляют особых требований.

Рис. 6. Конденсаторы общего назначения

Все остальные ёмкостные радиоэлементы принадлежат к классу специального назначения:

  • импульсные;
  • пусковые;
  • высоковольтные (см. рис. 7);
  • помехоподавляющие,
  • дозиметрические и др.;

Рис. 7. Высоковольтные конденсаторы

Изображённые на фото устройства могут работать в высоковольтных цепях сравнительно низкой частоты.

Замена электролитического конденсатора – основные правила

Чаще всего ремонт блока питания любого электронного устройства заключается в замене вздутого или высохшего электролитического конденсатора. При такой неисправности достаточно выпаять вышедший из строя конденсатор и заменить его новым. Однако довольно редко имеется в наличие аналогичный электролитический конденсатор, но во многих случаях его можно заменить другим, имеющим несколько отличительные параметры.

В первую очередь следует ориентироваться на напряжение. При отсутствии подходящего номинала подойдет конденсатор с большим напряжением. Например, если на корпусе оригинального конденсатора написано 35 В, то подойдет аналог с напряжением 50 В, 63 В, 100 В и т.д. – в сторону увеличения. Нельзя выполнять замену на аналог с более низким напряжением: 25 В, 16 В или 9 В. Иначе он взорвется.

Получить требуемое напряжение можно путем последовательного соединения нескольких накопителей, о чем более подробно с примерами расчетов рассказано здесь.

Следующий параметр – емкость. Как правило, в преобладающем большинстве случаев, электролитические конденсаторы, особенно большой емкости, применяются для сглаживания пульсаций выпрямленного напряжения: чем большая емкость, тем лучше сглаживаются пульсации. Поэтому, в случае отсутствия накопителя такой же емкости, его можно заменить аналогом большей емкости.

Если отсутствуют электролитические конденсаторы нужной емкости и достаточно места на печатной плате устройства, то вместо одного накопителя можно впаять несколько параллельно соединенных. При этом емкости их будут складываться, о чем подробно с примерами расчетов рассказано здесь.

Конденсаторы широко применяются в электротехнике в качестве элементов, сглаживающих пульсации переменного тока, фильтров частоты, или накопителей энергии. Кроме того, эти радиодетали можно применять в качестве гальванической развязки. Технологий изготовление множество, принцип общий: между двумя обкладками кроме диэлектрика размещается особое химическое вещество, определяющее характеристики. Для электроустановок постоянного тока, применяются электролиты. Это недорогая технология, которая имеет серьезный недостаток: жидкость может закипеть от перегрузки или высокой температуры, и тогда конденсатор буквально взрывается. К счастью, такой «экстрим» случается редко: в большинстве случаев корпус просто разрушается, теряет герметичность, и электролит вытекает на монтажную плату.

Поэтому в ответственных узлах применяются конденсаторы, изготовленные по иной технологии. Вместо жидкого электролита применяется токопроводящий органический полимер. Он имеет фактически твердую консистенцию, поэтому при экстремальных нагрузках (включая температурные) опасности не представляет. Такие конденсаторы называются твердотельными (по причине отсутствия жидких фракций). Характеристики этих элементов не уступают традиционным «электролитам», однако стоимость деталей существенно выше. Есть еще один недостаток твердотельной конструкции — ограничения по вольтажу. Верхний предел напряжения не более 35 Вольт. Учитывая область применения (компьютеры, бытовая техника, автомобили), это не является большой проблемой.

По причине высокой стоимости, домашние мастера стараются избегать покупки дорогих деталей, используя б/у компоненты для замены. В любом случае, чтобы не тратить лишние деньги, необходимо знать, как проверить твердотельный конденсатор.

Как работает полимерный конденсатор

Чтобы проверить любой прибор, желательно понимать механизм его работы. Поскольку тема нашего материала — твердотельные конденсаторы (аналоги электролитических), значит речь пойдет о радиоэлементах для постоянного тока, то есть полярных. Все со школьной скамьи помнят эту иллюстрацию:

Две металлические пластины с диэлектриком между ними (для лаборатории подойдет даже воздух). Если на контакты подать потенциал, между пластинами накапливается разноименные заряды, и в пространстве между ними возникает электрическое поле. При отсутствии электрической цепи это поле может сохраняться достаточно долго (современные элементы обеспечивают утечку заряда, стремящуюся к нулю). Именно это свойство лежит в основе применения конденсаторов.

Элемент имеет определенные основные характеристики:

  • Рабочее напряжение определяется величиной, при которой не наступает пробой диэлектрика. Конденсаторы выглядят совсем не так, как мы привыкли видеть на лабораторном столе в классе физики. Детали весьма компактны, соответственно расстояние между пластинами минимально. Отсюда ограничение по предельному напряжению.
  • Емкость конденсатора — его главный параметр. Он определяет, сколько электрической энергии деталь может накопить и удерживать в себе. Величина напрямую зависит от площади пластин.

Второстепенные характеристики:

  • Параметры утечки. Могут определяться током потери накопленного заряда, либо сопротивлением диэлектрика. Идеальные показатели возможны только в вакууме, но такие конденсаторы для бытового использования не выпускаются.
  • Температурный коэффициент: определяется дельтой изменения емкости в зависимости от температуры.
  • Точность — указывается в процентах. Показывает разброс параметров емкости от эталонной (маркировочной) величины.

Основные параметры и характеристики

Ёмкость.

Важным параметром конденсатора является его номинальная ёмкость. Для плоского конденсатора справедлива формула:

С = (ε*ε*S) / d,

где ε – диэлектрическая проницаемость диэлектрика, S – размеры обкладок (площадь пластин), d – расстояние между пластинами (обкладками).

Реальная емкость отдельных элементов обычно невелика, но можно получить конструкцию ёмкостью в несколько фарад, если параллельно соединить огромное число обкладок. В этом случае реальная ёмкость равняется сумме всех ёмкостей обкладок.

Максимальные емкости некоторых конденсаторов могут достигать нескольких фарад.

Удельная ёмкость.

Величина, характеризующая отношение ёмкости к объёму или к массе радиодетали. Данный параметр важен в микроэлектронике, где размеры деталей очень важны.

Номинальное напряжение.

Одной из важных электрических характеристик является номинальное напряжение – значение максимальных напряжений, при которых конденсатор может работать без потери значений других его параметров. При превышении критической величины равной напряжению пробоя происходит разрушение диэлектрика. Поэтому номинальное напряжение подбирают заведомо большее любых возможных максимальных амплитуд синусоидального тока в цепи конденсатора.

Существуют характеристики, такие как тангенс угла потерь, температурный коэффициент ёмкости, сопротивление утечки, диэлектрическая абсорбция и др., которые интересны только узким специалистам, а их параметры можно узнать из специальных справочников.

Практическое применение на автомобиле

Далеко не все домашние мастера будут тестировать элементную базу материнских плат компьютеров. А вот навыки, как проверить конденсатор трамблера, пригодятся любому автолюбителю. Изучим методику на примере классики ВАЗ.

  • Для проверки необходимо отсоединить кабель, идущий от трамблера до конденсатора. Он обычно соединен с одним контактом прерывателя.

    Между контактами закрепляем лампу мощностью 35–50 Вт (разумеется, с напряжением 12 вольт). Если при включении зажигания лампа загорелась, конденсатор неисправен, то есть «пробит» (это самая характерная поломка). Если «контролька» не светится — конденсатор исправен.

  • Второй способ можно применять в крайнем случае, если у вас не нашлось лишней лампы. После включения зажигания, необходимо быстро и вскользь коснуться контактами друг к другу. Если ничего не происходит — конденсатор в порядке. При наличии искрения — радиоэлемент «пробит».

Для того, чтобы проверить твердотельные либо электролитические конденсаторы, не обязательно иметь образование радиоинженера. Руководствуясь нашими советами, вы сможете точно определить исправность радиодеталей, и сэкономить средства на покупку новых элементов. Учитывая высокую стоимость именно таких конденсаторов, снижение затрат на ремонт будет ощутимым.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Автовиртуоз
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector